7月11号 机器学习(Machine Learning)#
Why ML in an HPC course?#
- ML(especially DL) is a special serious of application requiring large computing power.
- ML can be used to guide system optimization
- Emerging research topic : MLsys()
Preview#
-
Introduction
-
Basic of Machine Learning
-
Typical Network Architectures
CNN
Attention
- DL Hardware & Software
- MLSys
ML#
- Machine Learning Problems(classification / Regression / Clustering / Dimensionality reduction)
- Learning method((un)Supervised learning / transfer learning / reinforcement learning)
- Gradient Descent, and learning rate (just like 步长) (Stochastic随机)
- About fit.
DL#
-
Multilayer Perceptions(Input Hidden Output)
-
Forward / Back Propagation(follow chain rules)
Preview
Layers(Activation Function Loss Function Regularization Dropout Normalization)
Optimizers
Problems in DL(Gradient Vanishment Overfitting Fitting Non‐linear Functions )
- Activation Function(sigmoid(容易梯度消失) / tanh / Rectified Linear Unit(可避免梯度消失) )
- Loss Function(•Cross Entropy / Mean Square Error)
- Regularization(正则化)
-
Dropout
-
Batch Normalization(skip math)
- Optimizer(link)
SGD; SGD + Momentum; AdaGrad; Adam
CNN#
学长讲了不少,但是不太想记了。主要听听就好
Last update:
2024年1月28日 13:01:36
Created: 2023年7月11日 17:42:57
Created: 2023年7月11日 17:42:57